

16

Web-based programming projects

Hardware store
Scenario

The manager of a hardware store requires a web site to advertise products and services on-line, in order to
attract customers to the store. The business stocks a wide range of tools and appliances for use in the
home and garden, and also provides a service to design and install bathrooms and kitchens in customers'
homes. There is no requirement at the present time to sell products or services directly from the web site.

Design

An outline flowchart for the project is shown below. The website will be constructed in two sections: one
section will be freely available for viewing by the public, whilst the other section will be password-
protected and available only to staff of the hardware store.

The public website will display a set of pages giving general information about the store and the products
and services provided. A catalogue page will then display details of products available in the store,
including description, photograph and price. The catalogue will obtain its content by accessing an on-line
database. Customers may search by category of product, such as: power tools or bathroom fittings.

The staff section will be accessed through a log-in page. User name and password will be verified with the
on-line database. Staff may view product records, edit or delete current products or add new products as
required.

Programming

Basic web pages will be produced with HTML code, with CSS styles used to improve the formatting and
appearance of the pages.

Each page will display a standard header and menu system. To avoid unnecessary duplication, these
components will be stored as a CSS style sheet and a PHP code file which can be accessed by each separate
page as necessary.

We will use an object oriented approach in PHP for handling staff log-in and product records. Records will
be transferred to the server memory as sets of objects:

The staff class will contain a function to check the input user name and password, returning a boolean
value to indicate whether a valid log-in has been made.

The product class will contain functions to carry out each of the database operations: creating new records,
and retrieving, updating and deleting existing records.

The classes can be stored in PHP code files, and their functions accessed by any web page as necessary.
This approach again reduces the amount of code duplication, and can increase the program reliability by
allowing the objects to be thoroughly tested before inclusion in the web site.

staffID username password

2

Staff

object

user interface server software database

17

Chapter 2: Hardware store

Method

Start by creating a folder to store files for the project; this may be called hardware. Open a blank text
document and save this into the folder as index.php. Add the lines of code shown below.

 <html>
 <head>
 <title> Hardware store </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>

 <body>
 <?
 include('menu.php');
 ?>
</body>
</html>

18

Web-based programming projects

The program includes links to a style sheet and a separate file which will contain a menu system.

Re-save the index.php file. Create a hardware folder on the server and upload the file into this folder. All
files for the project will be placed within this folder.

Use a desktop publishing or graphics application such as Microsoft Word or Photoshop to produce a title
bar for the head of each page. This should be approximately 1100 pixels wide by 140 pixels high. Transfer
this to the server as header.jpg

Begin a style sheet by creating an empty text file in a text editor and adding the code:

 body
 {
 background-color: #F0F0F0;
 font-family: Arial, Helvetica, sans-serif;
 color: black;
 }

 #header
 {
 height: 155px;
 background-image : url(header.jpg);
 background-repeat: no-repeat;
 background-color: #FFFFFF;
 }

Save this file into the hardware folder with the name styleSheet.css, then copy it to the server.

We need one final file before testing the page. Create a new text file and add the code below to set up the
menus. Save this file as menu.php and copy it to the server.

 <?

 echo"<div id='header'>";
 echo"</div>";

 echo"<div id='navigation'>";
 echo"<ul id='nav'>";
 echo"Our Store";
 echo"Products";
 echo"Services";
 echo"Contact Us";
 echo"";
 echo"</div>";

 echo"<div id='products'>";
 echo"<ul id='cat'>";
 echo"Power tools";
 echo"Hand tools";
 echo"Decorating";
 echo"Kitchen";
 echo"Bathroom";
 echo"Garden";
 echo"";
 echo"</div>";
?>

19

Chapter 2: Hardware store

Test the index.php web page in a browser. To do this, enter the domain name for your site, followed by the
directory name hardware, e.g:
 www.website.com/hardware
The page index.php will be load automatically as the default homepage for the site. The header and two
sets of menu items should be displayed.

Reopen the style sheet file styleSheet.css, then add the additional code shown in the rounded rectangles
on the two pages below. Save the amended style sheet file, and copy it to the server.

 #header
 {
 height: 155px;
 background-image : url(Header.png);
 background-repeat: no-repeat;
 background-color: #FFFFFF;
 }

 #navigation
 {
 width: 1150px;
 height: 40px;
 }
 #nav
 {
 list-style: none;
 }
 #nav ul
 {
 list-style: none;
 display: none;
 }
 #nav li
 {
 font-size: 14px;
 float: left;
 position: relative;
 width: 270px;
 height: 32px;
 left: -38px;
 top: -15px;
 border: 1px solid #000000;
 }

20

Web-based programming projects

 #nav a:link, #nav a:active, #nav a:visited
 {
 display:block;
 color: #000000;
 text-decoration: none;
 padding: 8px;
 text-align: center;
 }
 #nav a:hover
 {
 font-weight:bold;
 padding: 6px;
 font-size: 16px;
 }
 #products
 {
 background-color: #F0F0F0;
 float: left;
 width: 200px;
 list-style: none;
 }
 #cat
 {
 list-style: none;
 }
 #cat ul
 {
 list-style: none;
 display: none;
 }
 #cat li
 {
 background-color: #FFFFFF;
 margin: 1px;
 font-size: 14px;
 float: left;
 position: relative;
 width: 170px;
 height: 32px;
 left: -38px;
 top: -15px;
 border: 1px solid #000000;
 }
 #cat a:link, #nav a:active, #nav a:visited
 {
 display:block;
 color: #000000;
 text-decoration: none;
 padding: 8px;
 text-align: center;
 }
 #cat a:hover
 {
 font-weight:bold;
 padding: 6px;
 font-size: 16px;
 }

Re-run the index.php page by clicking the refresh icon in the browser whilst holding down the CTRL key.
This ensures that the style sheet is re-loaded from the server.

21

Chapter 2: Hardware store

The menu items now appear in boxes, and should be highlighted as the mouse pointer passes over them.
Notice that the two lists of menu items in the index.php file were given the id values 'nav' and 'cat' . This
allowed the style sheet to apply different formatting styles to the boxes making up the two menu blocks.
These are identified in the style sheet by the tags #nav and #cat.

A template has been created, which can be used to produce each page of the website.

The pages for Our Store, Products and Services will display images. Obtain suitable .JPG photographs and
upload them to the server. Give the images the names ourStore.jpg, products.jpg and services.jpg.

Return to the index.php script and add a table to display a heading 'Our store' and the corresponding
image, as shown in the program code below.

ourStore.jpg

products.jpg

services.jpg

22

Web-based programming projects

 <body>
 <?
 include('menu.php');
 ?>

 <table cellpadding = 10>
 <tr><td bgcolor="white">
 <h2>Our store</h2>

 </td></tr>
 </table>

 </body>
 </html>

Save the amended file index.php and copy it to the server.

Additional text or images could be added to this page as required by the manager of the shop.

Copy the index.php file and save this three times, using the file names products.php, services.php and
contactUs.php. Open each file in turn and amend the heading and image name in the table:

 In products.php, insert the heading 'Products' and the image file name 'products.jpg'.

 In services.php, insert the heading 'Services' and the image file name 'services.jpg'.

 In contactUs.php, insert the heading 'Contact Us'. A map can be displayed to show the location of
the store. Obtain a suitable map image and copy this to the server as map.jpg. Insert this file name
in the contactUs.php file.

23

Chapter 2: Hardware store

Upload the amended products.php, services.php and contactUs.php to the server. Test that the menu
system allows the user to move between each of these pages.

We can now turn our attention to the main function of the web site, which is to display information about
the hardware items for sale. When the user selects a product category from the left side menu, the
available items should be listed, along with picture images:

When a category is selected, a new page will open to display the available items. Create this by copying the
index.php file and saving it with the name displayItems.php. Delete the <table> … </table> block to leave
the code shown below:

<html>
 <head>
 <title> Hardware store </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>

 <body>
 <?
 include('menu.php');
 ?>
</body>
</html>

Save the changes and copy the file displayItems.php to the server and re-run the web site. Click any button
on the category menu at the left of the page. The blank page should open. Notice that the category
selected is identified by a variable attached to the page URL:

/displayItems.php?category=kitchen

24

Web-based programming projects

We will return later to complete this page when details of products stocked by the hardware store have
been uploaded.

The input of product details will be handled by a content management system which will allow the staff to
easily update the range of products. This must be password protected to prevent unauthorised access.

Begin a staff log-in screen by opening a new blank text file and entering the following code:

<html>
<head>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 <title>Jones' Hardware</title>
</head>

<body>
 <div id="header">
 </div>
 <form action="editStockItem.php" method="POST">
 <center>
 <h3>Staff Log-in</h3>
 <table border="0" cellpadding="10" >
 <tr>
 <td>User name</td>
 <td>
 <?
 echo "<input type=text size=30 name=user >";
 ?>
 </td>
 </tr>
 <tr>
 <td>Password</td>
 <td>
 <?
 echo "<input type=password size=30 name=pass >";
 ?>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type=submit value="Enter">
 </td>
 </tr>
 </table>
 </center>
 </form>
 </body>
</html>

Save the file as staffLogin.php and copy it to the server.

Run the staffLogin page by entering a browser URL which includes the file name, e.g.
 www.website.com/hardware/staffLogin.php
Entry boxes should appear. Notice that the password box is set to conceal the text which is being entered.

25

Chapter 2: Hardware store

We must now set up a database table for staff usernames and passwords. Log-in to the PHP MyAdmin web
site for your database account and display the list of tables in the database. Select the New option from
the list of tables. Set up three fields: staffID as integer, staffUsername and staffPassword both of type
varchar with a length of 20 characters. Name the table as 'staff' and save the table design.

Click the checkbox alongside the staffID field, then click the Primary icon to set this as the primary key field
of the table. Notice that we have used the name of the table (staff) followed by the letters 'ID' as the
identifier for the primary key field staffID. We will use this naming convention for all tables, to make the
primary key easy to identify.

We will set our own values for staffID. It is important that members of staff are not accidentally assigned
the same ID number. This can be avoided by allowing the database to automatically insert ID numbers
which will be incremented sequentially as each new record is added.

Click the Change option on the staffID line, then tick the auto increment (A_I) box:

26

Web-based programming projects

Use the Insert option to add several members of staff as test data, as in the examples below:

The first web page that a member of staff will access after logging-in will display menu options to edit or
delete stock records. Create this web page, save it as editStockItem.php and copy the file to the server.

<?
 $user=$_REQUEST['user'];
 $pass=$_REQUEST['pass'];
?>

<html>
 <head>
 <title> Hardware store </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>

 <body>
 <?
 include('menu.php');
 echo"<p>User: ".$user;
 echo"<p>Password: ".$pass;
 ?>
</body>
</html>

Before the page runs, the PHP $_REQUEST lines will obtain the values entered in the text boxes on the log-
in page, using the variable names user and pass which we allocated to these text boxes. The remainder of
the page is simply our blank page template, with the addition of lines of code to output the user name and
password for testing purposes. These can be removed once the program is working correctly.

Run the staffLogin.php page, enter a user name and password and click the 'Enter' button. Check that
editStockItem page loads correctly with the user name and password displayed.

27

Chapter 2: Hardware store

The next stage is to access the staff database table to verify the data entered. We will begin by setting up a
user.inc file to authorise access to the on-line database. This has the format:

 <?
$username="YOUR USER NAME";
$password="YOUR PASSWORD";
$database="YOUR DATABASE NAME";

 ?>

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with
the username and password which give you access to the PHP MyAdmin website. The entry for "YOUR
DATABASE NAME" is normally the same as the username entered on the first line. Save this small file as
user.inc and copy it to the server.

An object oriented approach will be used when working with the database. A Staff class will provide a link
between the staff database table and the web pages, allowing log-in details to be verified.

Open a blank text file and save this as Staff.php. By convention, class flies have names beginning with an
upper case letter. Add the lines of code below. The attributes $user and $pass are defined for a Staff
object. A constructor method is then added, which can accept a user name and password and create a new
Staff object with these attributes.

 <?
class Staff
{
 private $user;
 private $pass;

 function __construct($user,$pass)
 {
 $this->user = $user;
 $this->pass = $pass;
 }
}
?>

Add a function which checks a Staff object against the log-in user name and password. A true value is
returned if the log-in matches the current Staff object, or a false value is returned if they differ.

 function __construct($user,$pass)
 {
 $this->user = $user;
 $this->pass = $pass;
 }

 private function checkUser($userWanted,$passWanted)
 {
 if (($userWanted==$this->user)&&($passWanted==$this->pass))
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 }
 ?>

28

Web-based programming projects

Save the Staff.php file.

We have dealt so far with an individual staff record in the database, being able to convert the record to an
object and then check whether the attributes of that object match the user name and password entered on
the log-in screen. To produce a fully functional log-in system, we must add an overall method which will
run a loop to create objects for every staff record, then check whether any of them matches the entered
log-in values.

Add the method checkPassword() shown below to the Staff.php file. This is designated as static, to
indicate that it operates on the whole Staff class rather than on only one particular Staff object.

 else
 {
 return false;
 }
 }

 public static function checkPassword($userWanted,$passWanted)
 {
 include('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM staff";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $user= $row["staffUsername"];
 $pass=$row["staffPassword"];
 $staff[$i] = new Staff($user,$pass);
 $i++;
 }
 $found=false;
 for ($i=1;$i<=$num;$i++)
 {
 $answer= $staff[$i]->checkUser($userWanted,$passWanted);
 if ($answer==true)
 {
 $found=true;
 }
 }
 return $found;
 }

}
?>

The checkPassword() method begins by loading the user.inc file which will authorise access to the on-line
database. All the records in the staff table are then copied to the server using the SQL SELECT command.
The database is closed when the record transfer is completed. The variable $num records the number of
records in the staff table.

The next section of the method uses a loop to access each record, creating a new Staff object with the
corresponding user name and password attributes.

29

Chapter 2: Hardware store

In a final loop, each Staff object is checked against the entered log-in details by means of the checkUser()
function which we created earlier for individual objects. A result of true is returned if a matching staff
record is found, whilst an overall result of false is returned if none of the staff records match the log-in
entries. Save the completed Staff.php class file and copy this to the server.

We will now test the log-in system. Add lines of code to the editStockItem.php file which will link to the
Staff class file and run the checkPassword() method. Save the file and copy it to the server.

 <?
 include('menu.php');
 echo"<p>User: ".$user;
 echo"<p>Password: ".$pass;

 include('Staff.php');
 if (Staff::checkPassword($user,$pass)==true)
 {
 echo"<p>USER FOUND";
 }
 else
 {
 echo"<p>USER NOT FOUND";
 }

 ?>

Notice that a double colon (::) is used when a static function or variable is accessed within an object class.

Run the staffLogin.php page. Enter both correct and incorrect log-in details and check that these are
identified correctly by the program.

When the program is working correctly, re-open the editStockItem.php file. The lines displaying the user
name, password and test message should be deleted and replaced by a header command, as shown below.
This will immediately return the user to the log-in screen if an invalid user name or password is detected.
Save the updated file and copy it to the server. Check that an incorrect log-in does not allow the user to
access the stock items page.

 <body>
 <?
 include('menu.php');
 include('Staff.php');

 if (Staff::checkPassword($user,$pass)==false)
 {
 header('Location: staffLogin.php');
 }

 ?>
 </body>

30

Web-based programming projects

We will now assume that a member of staff has reached the editStockItem.php page after entering valid
log-in details. Staff will require different menu options to members of the public, so the next step is to
produce a modified menu file. Open the menu.php file, then re-save the file with the name
staffMenu.php.

Edit the first set of options.

echo"<div id='navigation'>";
echo"<ul id='nav'>";

 echo"Add stock item";
 echo"Edit stock item";
 echo"Delete stock item";
 echo"Return to homepage";

echo"";
echo"</div>";
echo"<div id='products'>";

Edit the second set of options to direct users back to the editStockItem.php page,

 echo"<div id='products'>";
 echo"<ul id='cat'>";

 echo"Power tools";
 echo"Hand tools";
 echo"Decorating";
 echo"Kitchen";
 echo"Bathroom";
 echo"Garden";

 echo"";
 echo"</div>";

Re-save the modified staffMenu.php file, then copy it to the server.

Finally, edit the line of code near the start of <body> in editStockItem.php so that it will load the modified
staffMenu.php file. Save the amended editStockItem.php file and copy it to the server.

<body>
 <?

 include('staffMenu.php');

 include('Staff.php');

Run the page and log-in as a member of staff. Check that the staff menu is now displayed:

31

Chapter 2: Hardware store

Before continuing, we need to attend to one further security issue. If an unauthorised user guessed the

URL for a page within the staff system, such as addStockItem.php, they would be able to by-pass the log-in

procedure and load the page directly. It is simple to close this loophole using a session variable which we

can call login. After successful password entry, login will be set to 'YES'. The variable can then be checked

as each staff page is loaded, and access denied if login does not have a 'YES' value.

To use a session variable, the command session_start() must be inserted as the very first line of the

editStockItem.php page. We will then read the current value of the login variable.

<?

 session_start();
 $login=$_SESSION['login'];

 $user=$_REQUEST['user'];
 $pass=$_REQUEST['pass'];
?>

<html>
 <head>
 <title> Hardware store </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>

Before accessing the staff database, we check whether the login variable already has a 'YES' value because
an authorised staff member is returning to this page. If not, the password check is carried out and the login
variable set to a 'YES' value if successful.

 <body>
 <?
 include('staffMenu.php');
 include('Staff.php');

 if (!($login=='YES'))
 {

 if (Staff::checkPassword($user,$pass)==false)
 {
 header('Location: staffLogin.php');
 }

 else
 {
 $_SESSION['login']='YES';
 }
 }

 ?>
</body>

Save the modified editStockItem.php page, and copy this to the server.

We just need to add lines of code at the start of staffLogin.php to activate the session and set the login

variable back to a blank string. Open the staffLogin.php file and add lines of program code before the

HTML page begins.

32

Web-based programming projects

 <?
 session_start();
 $_SESSION['login']='';
 ?>

 <html>

 <head>

Save the updated file and copy it to the server.

We can test the security system by creating a new addStockItem.php page. The page uses our standard
template, but begins by accessing the login session variable. If this is not set to 'YES', the user is
immediately redirected to the staff log-in page.

Open a blank file and add the program code shown below. Save the file as addStockItem.php, then copy it
to the server.

 <?

 session_start();
 $login=$_SESSION['login'];
 if (!($login=='YES'))
 {
 header('Location: staffLogin.php');
 }
?>
<html>
 <head>
 <title> Hardware store </title>
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />
 </head>
 <body>
 <?
 include('staffMenu.php');
 ?>
</body>
</html>

Run the staff login page and enter an incorrect user name or password. You should be returned to the staff
log-in. Now attempt to by-pass the password system by entering the page address addStockItem.php in
the browser. You should again be returned to the staff log-in page. Now enter a correct log-in, and it
should be possible to navigate to the addStockItem.php page by means of the staff menu. You can check
this by looking at the address bar of the browser.

We can now return to work on the addStockItem.php page. The page will be laid out using table blocks.

<table>
<table> <table>

</table>
</table> </table>

33

Chapter 2: Hardware store

 </td>
 </tr>
 </table>

An outer table organises the overall structure, and contains two inner tables along side one another. The

left hand table handles text input, whilst the right hand table will allow the selection, up load and display of

an image of the product.

Go to the addStockItem.php page and add the block of program code shown below. Notice that two tables
have been nested inside one another, as shown by the dotted outlines drawn on the program listing.

<body>
 <?
 include('staffMenu.php');
 ?>

 <table bgcolor='white' border='0' cellpadding='10'>
 <tr><td><h3>Add stock item</h3></td>
 </tr>
 <tr><td>

 <table bgcolor='white' border='0' cellpadding='10'>

 </table>

 </td>
 </tr>
 </table>

</body>

Within the inner <table> block, add lines of HTML and PHP code to input the Stock code and Product title.
Please note that the <input> commands should be entered as a single line of code without a line break.
Name and id values have been allocated to the input boxes, to identify them so that data can be copied
into or collected from the boxes.

 <table bgcolor='white' border='0' cellpadding=10>

 <tr>
 <td>Stock code</td>
 <?
 echo"<td>";
 echo"<input type='text' name='txtStockcode' id='stockcode' width='300px'
 value='".$txtStockcode."'></td>";
 ?>
 </tr>
 <tr>
 <td>Product title</td>
 <?
 echo"<td>";
 echo"<input type='text' name='txtTitle' id='title' width='300px'
 value='".$txtTitle."'></td>";
 ?>
 </tr>

</table>

34

Web-based programming projects

Re-save the updated addStockItem.php file and copy it to the server. Run the page and check that input

boxes for Stock code and Product title are displayed.

Re-open addStockItem.php. Insert the following PHP code to produce the drop down list of product
categories below the stock code and product rows in the table. This code begins by setting up arrays for
the category codes and caption text. A loop then displays the categories in the drop down list.

 </tr>

 <tr>
 <td>Category</td>
 <td>
 <select name="lstCategory" id="category">
 <?
 $cat[1]='power'; $text[1]='Power tools';
 $cat[2]='hand'; $text[2]='Hand tools';
 $cat[3]='decorating'; $text[3]='Decorating';
 $cat[4]='kitchen'; $text[4]='Kitchen';
 $cat[5]='bathroom'; $text[5]='Bathroom';
 $cat[6]='garden'; $text[6]='Garden';
 for ($i=1; $i<=6; $i++)
 {
 if ($lstCategory==$cat[$i])
 echo"<option value='".$cat[$i]."' selected>".$text[$i];
 else
 echo"<option value='".$cat[$i]."'>".$text[$i];
 echo"</option>";
 }
 ?>
 </select>
 </td>
 </tr>

 </table>

The final step in producing this section of the addStockItem.php page is to add input boxes for Description

and Price. The <input> commands should be entered as a single line of code without a line break.

 </td>
 </tr>
 </table>

35

Chapter 2: Hardware store

 </select>
 </td>
 </tr>

 <tr>
 <td>Description</td>
 <?
 echo"<td>";
 echo"<textarea rows = '6' cols = '30' name = 'txtDescription'
 id='description'>$txtDescription</textarea>";
 echo"</td>";
 ?>
 </tr>
 <tr>
 <td>Price £</td>
 <?
 echo"<td><input type='text' name='txtPrice' id='price' width='100px'
 value='".number_format($txtPrice,2)."'></td>";
 ?>
 </tr>

 </table>
 </td>
 </tr>
 </table>

Save the addStockItem.php file and copy it to the server. Check that the input boxes appear correctly on
the page.

Go now to the PHP MyAdmin web site. Set up a new database table named product to store product
records. As for the staff table, insert an integer product ID field and set this as the key field with auto-
incrementing values. The price has the number format decimal with length/values set to 8,2. The
remaining fields are of type varchar: Stockcode has a size of 20 characters; title, category and picture have
sizes of 50 characters; and description is 500 characters.

36

Web-based programming projects

The input of a picture of the stock item will involve two steps:
The user will first select the file name for an image on their client computer (e.g. hammer.jpg) and
this filename will be stored in the database.
The picture file itself will be uploaded to the server and stored in a folder which we will call
'products'.

Go to your FTP program and set up a products folder on the server within the hardware folder:

Return to the addStockItem.php file. Add the lines of code shown below to create the picture input
section. The components added will be displayed in another table:

 A file input component will allow the picture image to be selected on the user's computer.

 An 'upload image' button will initiate the upload of the image file to the server.

 After the upload is completed, the image will be displayed on the web page and the filename
 will be stored in a hidden input for use later when we transfer the record to the database.

 echo"<td><input type='text' name='txtPrice' id='price' width='100px'
 value='".number_format($txtPrice,2)."'></td>";
 ?>
 </tr>

</table>

</td>
<td valign='top'>
 <table border="0" cellpadding="10">
 <tr>
 <td>Image</td>
 <td><input type="file" name="fileToUpload" id="fileToUpload">
 </tr>
 <tr>
 <td><input type="submit" value="Upload Image" name="submit">
 <p>
 <?
 echo"";
 echo"<input type='hidden'value='".$imageFile."' id='imageFile'>";
 ?>
 </td>
 </tr>
 </table>

 </td>
 </tr>
</table>

Save the updated addStockItem.php file, then copy it to the server. Run the staff web site, navigate to the
addStockItem.php page and check that components are displayed correctly:

37

Chapter 2: Hardware store

The image upload will be carried out by PHP program code in a new file upload.php. Create a blank
document and add the program code shown below. Save the file as upload.php and copy it to the server.

<?
 session_start();
 $txtStockcode = $_REQUEST["txtStockcode"];
 $txtTitle=$_REQUEST['txtTitle'];
 $lstCategory=$_REQUEST['lstCategory'];
 $txtDescription=$_REQUEST['txtDescription'];
 $txtPrice=$_REQUEST['txtPrice'];
 $imageFile=basename($_FILES["fileToUpload"]["name"]);

 $_SESSION["imageFile"]= $imageFile;
 $_SESSION["txtStockcode"] = $txtStockcode;
 $_SESSION["txtTitle"]= $txtTitle;
 $_SESSION["lstCategory"]= $lstCategory;
 $_SESSION["txtDescription"]= $txtDescription;
 $_SESSION["txtPrice"]= $txtPrice;

 $target_dir = "products/";
 $target_file = $target_dir.$imageFile;
 move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file);
 header('Location: addStockItem.php?imageUploaded=YES');
?>

This program begins by collecting the values input to the various text boxes and drop-down list on the
addStockItem.php page. These values are stored stored as session variables for future use. The selected
image file for the product is then uploaded to the server and stored in the products folder. Finally, the
program reloads the addStockItem.php page.

Re-open the addStockItem.php file. To activate the image upload, we must add a <form> tag. Do this
immediately before the first <table> tag. Please note that the <form> command should be entered as a
single line of code without a line break.

38

Web-based programming projects

 <body>
 <?
 include('staffMenu.php');
 ?>

 <form action="upload.php" name="itemEntryForm" method="post" enctype=
 "multipart/form-data">

 <table bgcolor='white' border='0' cellpadding=10>
 <tr>
 <td><h3>Add stock item</h3></td>
 </tr>

Close the form with </form> immediately after the final </table> tag.

 </tr>
</table>

</form>

</body>

Save the updated addStockItem.php file and copy it to the server.

Run the staff website. Log-in and go to the addStockItem.php page. Click the Choose file button and
select an image file (.jpg, .png or .gif format) from any directory on your computer. Click the Upload Image
button. Go to the server and check that the image file is now present in the products directory.

The image is not yet displayed on the addStockItem.php page. This is done in two stages. Firstly, we need
to retrieve the file name from the session variable. This file name is then used to display the picture on the
page.

Reopen the addStockItem.php file and add the following block of code near the start of the file.

<?
 session_start();
 $login=$_SESSION['login'];
 if (!($login=='YES'))
 {
 header('Location: staffLogin.php');
 }

 $imageUploaded=$_REQUEST['imageUploaded'];
 if ($imageUploaded=='YES')
 {
 $imageFile=$_SESSION['imageFile'];
 $txtStockcode=$_SESSION["txtStockcode"];
 $txtTitle=$_SESSION["txtTitle"];
 $lstCategory=$_SESSION["lstCategory"];
 $txtDescription=$_SESSION["txtDescription"];
 $txtPrice=$_SESSION["txtPrice"];
 }

?>

Save the updated addStockItem.php file and copy it to the hardware folder on the server.

39

Chapter 2: Hardware store

Re-run the addStockItem.php page. Enter a complete set of product data, making entries in each of the
text boxes and selecting an image file. Click the 'Upload image' button. The picture should now be
displayed, along with the text entered in the other input boxes.

We are now ready to save the stock record to the server. To facilitate file operations involving the stock
records, we will create a StockItem object class to link the user interface and database:

The class file contains three blocks of code:

 A list of the attributes belonging to a StockItem object: title, description, price, etc.

 A constructor method to create StockItem objects.

 A method to save a product record into the database table.

Create a new blank file and add the class definition shown below. Save the file as StockItem.php, then

copy it to the server.

productID title ………..

StockItem

object

user interface program software database

40

Web-based programming projects

<?
class StockItem
{
 private $productID;
 private $stockCode;
 private $category;
 private $title;
 private $description;
 private $image;
 private $price;

 function __construct($productID, $stockCode, $category,
 $title, $description, $image, $price)
 {
 $this->productID = $productID;
 $this->stockCode = $stockCode;
 $this->category = $category;
 $this->title = $title;
 $this->description = $description;
 $this->image = $image;
 $this->price = $price;
 }

 public static function saveRecord($productID, $stockCode, $category,
 $title, $description, $image, $price)
 {
 include('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: " . mysqli_connect_error()); }
 $query="INSERT INTO product VALUES ('','$stockCode', '$title',
 '$category','$description','$image','$price') ";
 echo $query;
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 }
 }

?>

Re-open the addStockItem.php file. We will add a button for uploading the stock item to the database.

41

Chapter 2: Hardware store

Insert the button after the outer </table> and </form> close tags. The button will activate a Javascript
function button_click().

 </tr>

 </table>
 </form>

 <center>
 <p>
 <button type="button" onclick="button_click()">Save record</button>

 <script>
 function button_click()
 {

 }
</script>
</center>

</body>

Add the following program code to the button_click() function. The first group of lines collects the
necessary data values from the input boxes. Any required validation can then be carried out. For this
example, presence checks are shown for the stock code and title fields.

 function button_click()
 {

 stockcode = document.getElementById("stockcode").value;
 title = document.getElementById("title").value;
 category = document.getElementById("category").value;
 description = document.getElementById("description").value;
 description = description.trim();
 imageFile = document.getElementById("imageFile").value;
 price = document.getElementById("price").value;
 var error=false;

 var n = stockcode.length;
 if (n<1)
 {
 alert("A stockcode must be entered");
 error=true;
 }

 n = title.length;
 if (n<1)
 {
 alert("A product title must be entered");
 error=true;
 }

 }

Any validation error will result in an error message being displayed, and an error variable will be set to true.
Only if error remains false will the program continue. The data values for the product record are
transferred to this page in the URL. Please note that the destination line should be entered without line
breaks.

42

Web-based programming projects

 alert("A product title must be entered");
 error=true;
 }

 if (error==false)
 {
 destination = 'saveStockItem.php?stockcode='+stockcode+'&title='
 +title+'&category=' + category +'&description='+ description
 +'&price='+ price +'&imagefile=' + imageFile;
 window.location.href= destination;
 }

 }

Save the completed addStockItem.php file and copy this to the server. Run the staff website, log-in and go
to the addStockItem page. Click the 'Save record' button and check that warnings appear that the
stockcode and title are missing. Validation checks could also be added for the description, price and image
fields if required.

Open a new file and add the code below. Save the file as saveStockItem.php and copy it to the server.

<html>
<head>
 <title> Hardware store </title>
 <?
 $stockcode=$_REQUEST["stockcode"];
 $title=$_REQUEST["title"];
 $category=$_REQUEST["category"];
 $description=$_REQUEST["description"];
 $imagefile=$_REQUEST['imagefile'];
 $price=$_REQUEST["price"];
 ?>
 </head>
 <body>
 <?
 include('StockItem.php');
 StockItem::saveRecord('', $stockcode, $category, $title,
 $description, $imagefile, $price);
 header('Location: editStockItem.php?categoryWanted='.$category);
 ?>
</body>

</html>

This block of code begins by collecting the field values from the page URL. The saveRecord() method in the
StockItem class is then called to transfer the record into the database. When saving is completed, the
program loads the editStockItem.php page where the category of products containing the new record will
be displayed.

Log-in to the web site as a member of staff. Go to the addStockItem page, insert details of a product
including a picture, and save the record. Check that the image has been uploaded to the products folder on
the server, and that the product record appears in the product table of the database.

43

Chapter 2: Hardware store

Re-open the editStockItem.php file. We will now complete the task which we postponed earlier - to create
displays of products within the different categories. This page will provide links to allow product records to
be edited.

Also open the StockItem.php class file, so that we can add further attributes and methods which will be

needed when handling the product records.

Begin by adding two static variables to the StockItem.php class file:

 $itemCount is an integer recording the number of products loaded in the required category.

 $product is an array identifying each of the product objects we create from the database records.

 The first object will be $product[1], the second will be $product[2], etc.

The variables are designated as static as only one instance occurs for the whole class. This is in contrast to
attributes such as $stockCode and $category which have separate instances for each object: the tap has a
price of £36.85, the hacksaw has a price of £9.26, etc.

<?
class StockItem
{

 public static $itemCount = 0;
 public static $product= array();

 private $productID;
 private $stockCode;
 private $category;

Go to the end of the StockItem class file and insert a loadStockItems() method. This takes the required
product category as an input parameter, then uses this parameter in an SQL command to load only the
records for products in the required category. The number of product records loaded is given by the
variable $num.

44

Web-based programming projects

public static function loadStockItems($categoryWanted)
{
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM product WHERE category='".$categoryWanted."'";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
}

 }
 ?>

Once the required records have been loaded from the database, the loadStockItems() method must use
these to create a set of StockItem objects which can be displayed on the web page.

Return to the loadStockItems() method at the end of the StockItem class file and add the block of code
shown below. Save the updated StockItem.php file and copy it to the hardware folder on the server.

 $num=mysqli_num_rows($result);
 mysqli_close($conn);

 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $productID=$row["productID"];
 $stockCode=$row["stockcode"];
 $title=$row["title"];
 $category=$row["category"];
 $description=$row["description"];
 $image=$row["picture"];
 $price=$row["price"];
 $obj = new StockItem($productID, $stockCode, $category, $title,
 $description, $image, $price);
 StockItem::$product[$i] = $obj;
 $i++;
 }
 StockItem::$itemCount=$num;
 return $num;

 }

Within this block of code, a loop operates for each of the downloaded records, collecting the attribute
values necessary to create a StockItem object. Once the set of attributes is complete, a new object is
created using the temporary name $obj. The object is then allocated to an element of the $product array.
Notice the use of the double colon symbol (::) to assign a value to a static variable. Finally, the function
returns a count of the number of StockItem objects which have been created.

We now have the necessary file handling function, and can return to the editStockItem.php file to add
program code to display the products.

In the <body> section of editStockItem.php, locate the block which checks the user name and password.

Immediately after this, insert PHP code to find the category of product selected. We then call the

loadStockItems() method from the StockItem class. This will create a $product[] array of objects for the

required category, count the number of objects created and return this number.

45

Chapter 2: Hardware store

 $_SESSION['login']='YES';
 }
 }

 $categoryWanted=$_REQUEST['category'];
 if ($categoryWanted=="")
 {
 $categoryWanted='hand';
 }
 include('StockItem.php');
 $itemCount = StockItem::loadStockItems($categoryWanted);

 ?>

We now have a set of objects ready to display on the web page, but a slight problem exists. The attributes
of the objects are private, so cannot be accessed directly by the outside program. This is a deliberate
feature of object oriented programming, to prevent the accidental corruption of object data. To access the
attributes we must add get() methods to the StockItem class file.

Return to StockItem.php and add the group of methods shown below. These small methods act as
gateways to release object attributes to the outside program.

 StockItem::$product[$i] = $obj;
 $i++;
 }
 StockItem::$itemCount=$num;
 return $num;
 }

 public function getProductID(){return $this->productID;}
 public function getStockCode(){return $this->stockCode;}
 public function getTitle(){return $this->title;}
 public function getCategory(){return $this->category;}
 public function getDescription(){return $this->description;}
 public function getImage(){return $this->image;}
 public function getPrice(){return $this->price;}

 }
 ?>

Save the updated StockItem.php class file, and copy it to the server.

Return to the editStockItem.php file and locate the block of program code which uploads the required set

of StockItem objects. Immediately below this, set up a <table> . . . </table> block for display of the objects

as shown below.

StockItem

object

user interface program software

46

Web-based programming projects

The program code uses a loop to access and display the attributes of each object, adding a new row to the

table for each product. Notice the use of the $product[] array to identify each object, and the double

colon (::) and arrow (->) operators to obtain the attributes by means of get() methods.

 include('StockItem.php');
 $itemCount = StockItem::loadStockItems($categoryWanted);
 ?>

 <table cellspacing=10px cellpadding =10>
 <?
 for ($i=1;$i<= $itemCount;$i++)
 {
 echo"<tr><td bgcolor='white' width=600px>";
 echo"".StockItem::$product[$i]-> getTitle()."<p>";
 echo StockItem::$product[$i]-> getDescription()."<p>";
 echo"£".number_format(StockItem::$product[$i]-> getPrice(),2).
 "<p></td>";
 echo"<td bgcolor='white'>
 <image src='products/".StockItem::$product[$i]-> getImage().
 "'width=200px></td>";
 }
 ?>
 </table>

 </body>

Save the updated editStockItem.php file and copy it to the server. Run the editStockItem page and check
that product details are displayed correctly for each category.

The final step required to complete this page is to allow editing of the product records.

Insert code which will display an 'edit' link alongside each product, and load a new page

editStockItem2.php if this is clicked.

47

Chapter 2: Hardware store

 echo StockItem::$product[$i]->description."<p>";
 echo"£".number_format(StockItem::$product[$i]-> getPrice(),2)."<p></td>";
 echo"<td bgcolor='white'>
 <image src='products/".StockItem::$product[$i]-> getImage()."' width=200px></td>";

 echo"<td bgcolor='white'><a href='editStockItem2.php?productID="
 .StockItem::$product[$i]-> getProductID()."'> edit</td>";

 }

Save the updated editStockItem.php file and copy it to the server. Run the editStockItem.php page and

check that the 'edit' option is displayed alongside each product entry:

Return to the StockItem.php class file. Insert the method loadByProductID().

 public function getImage(){return $this->image;}
 public function getPrice(){return $this->price;}

 public static function loadByProductID($productIDwanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM product WHERE productID='".$productIDwanted."'";
 $result=mysqli_query($conn, $query);

 $row=mysqli_fetch_assoc($result);
 $productID=$row["productID"];
 $stockCode=$row["stockcode"];
 $title=$row["title"];
 $category=$row["category"];
 $description=$row["description"];
 $image=$row["picture"];
 $price=$row["price"];

 $obj = new StockItem($productIDwanted, $stockCode, $category, $title,
 $description, $image, $price);
 StockItem::$product[0] = $obj;
 }

}
?>

The loadByProductID() method works in a similar way to the loadStockItems() function, but only the one
record to be edited will be retrieved.

Save the updated StockItem.php class file and copy it to the server.

The required record is transferred to an object identified as $product[0]. The attributes of this object can
now be accessed and edited. The page for editing this product will be almost identical to the page for
entering a new product record, so we can save time by copying this page file. Open the existing file
addStockItem.php, then re-save it as editStockItem2.php. Copy this to the server.

Insert lines of code into editStockItem2.php as shown below. These call the loadByProductID() function in
the class file, then access the properties of the object. This will allow values to be displayed in the various
text boxes on the form, and the picture image will be loaded.

48

Web-based programming projects

 $imageUploaded=$_REQUEST['imageUploaded'];

 $productID=0;

 if ($imageUploaded=='YES')
 {

 $productID=$_SESSION['productID'];

 $imageFile=$_SESSION['imageFile'];
 $txtStockcode=$_SESSION["txtStockcode"];
 $txtTitle=$_SESSION["txtTitle"];
 $lstCategory=$_SESSION["lstCategory"];
 $txtDescription=$_SESSION["txtDescription"];
 $txtPrice=$_SESSION["txtPrice"];
 }

 else
 {
 $productID=$_REQUEST['productID'];
 echo"<input type='hidden' id='productID' value=$productID>";
 include('StockItem.php');
 StockItem::loadByProductID($productID);
 $txtStockcode=StockItem::$product[0]->getStockCode();
 $txtTitle=StockItem::$product[0]->getTitle();
 $lstCategory=StockItem::$product[0]->getCategory();
 $txtDescription=StockItem::$product[0]->getDescription();
 $txtPrice=StockItem::$product[0]->getPrice();
 $imageFile=StockItem::$product[0]->getImage();
 }

?>
<html>

Within the <body> section of editStockItem2.php, make changes to the lines of code shown below:

 Between the <form> .. </form> tags, replace the name of the program file upload.php with
upload2.php. This will alter the page which will be loaded next if the option to change the picture
image is selected.

 Add a hidden <input> line to store the productID.

 Amend the heading to read 'Edit stock item'.

 include('staffMenu.php');
 ?>

 <form action="upload2.php" name="itemEntryForm" method="post"
 enctype="multipart/form-data">
 <?
 echo"<input type='hidden' name='productID' id='productID' value=$productID>";
 ?>

 <table bgcolor='white' border='0' cellpadding='10'>

 <tr><td><h3>Edit stock item</h3></td>

 </tr>
 <tr><td>
 <table bgcolor='white' border='0' cellpadding='10'>

Save the updated editStockItem2.php file and copy it to the server.

49

Chapter 2: Hardware store

Run the website and log-in as a member of staff. Select a product and click the 'edit' link. Check that the
product details are displayed.

A program file upload2.php will now be needed to handle the uploading of a new image to the server if the
picture is changed by the user. This will be very similar to the upload.php file produced earlier. We will
save time by copying this file.

Open the existing file upload.php and re-save it as upload2.php. Add the lines of code shown below.
These commands will access productID along with the other fields and store it as a session variable.

<?
 session_start();

 $productID = $_REQUEST["productID"];

 $txtStockcode = $_REQUEST["txtStockcode"];
 $txtTitle=$_REQUEST['txtTitle'];
 $lstCategory=$_REQUEST['lstCategory'];
 $txtDescription=$_REQUEST['txtDescription'];
 $txtPrice=$_REQUEST['txtPrice'];
 $imageFile=basename($_FILES["fileToUpload"]["name"]);

 $_SESSION["productID"]= $productID;

 $_SESSION["imageFile"]= $imageFile;
 $_SESSION["txtStockcode"] = $txtStockcode;

Change the return address in the header line to editStockItem2.php.

 $target_dir = "products/";
 $target_file = $target_dir.$imageFile;
 move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file);

 header('Location: editStockItem2.php?imageUploaded=YES');

 ?>

Save the updated upload2.php file and copy it to the server.

Edit stock item

50

Web-based programming projects

Run the staff web site. Select a product record to edit. When the editing page appears, choose an
alternative picture file and check that this is uploaded to the server and displayed correctly. Do not click
the 'save record' button, as we must first modify the program to update the existing record rather than
save a new record.

The final step in editing the product is to re-save the updated product record to the database. Open the
editStockItem2.php file to do this.

Make a change to the URL address which is used by the 'Save record' button at the bottom of the page.
The URL will include the value of the productID key field, so that the correct record will be updated.

 if (error==false)

 {

 productID = document.getElementById("productID").value;
 destination = 'updateStockItem.php?productID='+productID+'&stockcode='

 +stockcode+'&title='+title+'&category='+category+'&description='
 +description +'&price='+ price +'&imagefile=' + imageFile;

 window.location.href= destination;
 }

 }

 </script>

Save the updated editStockItem2.php file and copy it to the server.

Re-open the StockItem.php class file and add a function to update the required record. The long line

setting up the variable $query should be entered without line breaks.

 public static function updateRecord($productID, $stockCode, $category, $title,
 $description, $image, $price)
 {
 include('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="UPDATE product SET stockcode='".$stockCode."', title='".$title."',
 category='".$category."',description='".$description."', picture='".$image."',
 price='".$price."' WHERE productID='".$productID."'";
 echo $query;
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 }

 }
?>

Save the updated StockItem.php class file and copy it to the server.

We will now produce an updateStockItem.php page. This page will not be displayed to the user, but will

contain program code to update the record in the database when changes have been made to the product

details.

The updateStockItem.php page will be very similar to the page used to save new records, so to save time

we will copy this existing page file as a starting point. Load saveStockItem.php and resave it as

updateStockItem.php.

51

Chapter 2: Hardware store

Within the <head> block, add a line of code to obtain the productID for the record to be updated.

<html>

 <head>

 <title> Hardware store </title>

 <?

 $productID=$_REQUEST["productID"];

 $stockcode=$_REQUEST["stockcode"];

 $title=$_REQUEST["title"];

 $category=$_REQUEST["category"];

 $description=$_REQUEST["description"];

 $imagefile=$_REQUEST['imagefile'];

 $price=$_REQUEST["price"];

 ?>

 </head>

In the <body> block, edit the line of code to call the updateRecord() function in the StockItem class.

 <body>

 <?

 include('StockItem.php');

 StockItem::updateRecord($productID, $stockcode, $category, $title,

 $description, $imagefile, $price);

 header('Location: editStockItem.php?category='.$category);

 ?>

 </body>

</html>

Save the updateStockItem.php file and copy it to the server.

Run the staff web site and select a product to edit. Make changes to the fields, then save the updated
record. Check that the changes are shown correctly when the product is now displayed.

The final menu option to complete is ‘Delete stock item’. The screen display for this option will be very
similar to the editStockItem.php page, so we can again save time by using this file.

Open editStockItem.php. Make a change to the include line shown below, then re-save the file as
deleteStockItem.php.

 <body>

 <?

 include('staffMenu2.php');

 include('Staff.php');

52

Web-based programming projects

Open the staffMenu.php file. Change the lines of code in the products division so that the program re-
loads deleteStockItem.php. Save the file as staffMenu2.php, and copy it to the server.

echo"<div id='products'>";

 echo"<ul id='cat'>";

 echo"Power tools";

 echo"Hand tools";

 echo"Decorating";

 echo"Kitchen";

 echo"Bathroom";

 echo"Garden";

 echo"";

 echo"</div>";

?>

Re-open the deleteStockItem.php file and make the changes shown below. The 'edit' links alongside the
products are replaced by 'delete' buttons.

 <table cellspacing=10px cellpadding =10>
 <?

 for ($i=1;$i<= $itemCount;$i++)

 {

 echo"<tr><td bgcolor='white' width=600px>";

 $productID=StockItem::$product[$i]-> getProductID();
 $title=StockItem::$product[$i]-> getTitle();
 echo"".$title."<p>";

 echo StockItem::$product[$i]-> getDescription()."<p>";
 echo"£".number_format(StockItem::$product[$i]-> getPrice(),2)."<p></td>";
 echo"<td bgcolor='white'>

 <image src='products/".StockItem::$product[$i]->getImage()."' width=200px></td>";

 $text=$productID."**".$title;

 echo"<td bgcolor='white'><input type='button' id='".$text."' value='Delete'

 onclick='confirmDelete(this)'></button></td>";

 }

 ?>

 </table>

 <script>

 function confirmDelete(element)

 {

 productText = document.getElementById(element.id).id;

 words = productText.split('**');

 productID=words[0];

 title=words[1];

 choice = confirm('Are you sure you wish to delete '+words[1]+'?');

 if (choice == true)

 {

 window.location.href= "deleteStockItem2.php?productIDwanted="+productID;

 }

 }

 </script>

</body>

 Replaces the line:

 echo"".StockItem::$product[$i]...

 Replaces the line:
 echo"<td bgcolor='white'><a href='editStockItem2.php...

53

Chapter 2: Hardware store

When a button is clicked, a message window will ask for confirmation that the record is to be deleted.

Save the updated deleteStockItem.php file and copy it to the server.

Run the staff web site. Select the 'Delete stock item' option from the menu. Click the 'Delete' button

alongside a product, and check that the confirm message is displayed. Click 'cancel' and return to the

product display.

To complete the delete operation, we must add a method to the StockItem class file. Open the
StockItem.php file and add the deleteProduct() function shown below.

 public static function deleteProduct($productIDwanted)
 {

 include('user.inc');

 $conn = new mysqli(localhost, $username, $password, $database);

 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

 $query = "DELETE FROM product WHERE productID='".$productIDwanted."'";

 $result=mysqli_query($conn, $query);

 mysqli_close($conn);

 }

 }

?>

The fuction inputs the productID, which is used in an SQL command to identify the record to be deleted

from the database. Save the amended StockItem.php file and copy it to the server.

Finally, open a new text file and add the code shown below. Save this file as deleteStockItem2.php and

copy it to the server. This small program file obtains the productID, then calls the deleteProduct() method

in the StockItem class file. This in turn runs the SQL query to delete the specified record from the database

table.

<?

 $productIDwanted = $_REQUEST['productIDwanted'];

 include('StockItem.php');

 StockItem::deleteProduct($productIDwanted);

 header('Location: deleteStockItem.php');

?>

54

Web-based programming projects

Run the staff web site. Enter a test record, then check that this can be deleted successfully.

This completes the staff section of the website, but we need to return to the public section to set up the

display of product records. Open the file displayItems.php and add the code shown below.

 <body>

 <?

 include('menu.php');

 $categoryWanted=$_REQUEST['category'];

 if ($categoryWanted=="")

 {

 $categoryWanted='hand';

 }

 include('StockItem.php');

 $itemCount = StockItem::loadStockItems($categoryWanted);

 echo"<table cellspacing=10px cellpadding =10>";

 for ($i=1;$i<= $itemCount;$i++)

 {

 echo"<tr><td bgcolor='white' width=600px>";

 echo"".StockItem::$product[$i]->getTitle()."<p>";

 echo StockItem::$product[$i]->getDescription()."<p>";

 echo"£".number_format(StockItem::$product[$i]->getPrice(),2)."<p></td>";

 echo"<td bgcolor='white'>

 <image src='products/".StockItem::$product[$i]->getImage()."' width=200px></td>";

 }

 ?>

</body>

</html>

Save the updated displayItems.php file and copy it to the server. Run the public section of the web site.

Select categories of product from the left-hand menu, and check that product details are displayed

correctly.

55

Chapter 2: Hardware store

Further development

This project could form the basis for developing a larger on-line sales and stock control system, which might
also allow customers to upload reviews of the products or send on-line enquiries to the shop. Similar
programs to this web site could be developed for a wide range of shops, for example: selling computer
equipment, books or music CD's.

The hardware store project could form the basis for a website accepting orders and payment on-line for
products, or managing bookings on-line for services. Techniques for handling on-line bookings will be
explored in the caravan park and airline bookings projects which follow.

56

Web-based programming projects

Summary of the object structures

- private

+ public

underlined static

